

Code No. :14313

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE: CBCS) IV-Semester Main Examinations, May-2019

Electrical Circuits - II

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	Μ	L	CO	PO
	Part-A ($10 \times 2 = 20$ Marks)				
1.	Draw the Series equivalent circuit of capacitor under initial conditions.	2	1	1	1,2
2.	120 Ω 12 Ω	2	3	1	1,2
	$50 \text{ V} \textcircled{2}$ $80 \Omega \overset{2}{\leq} = 200 \text{ mF}$				
	Fig. 1				
	Obtain the time constant of the circuit shown in Fig.1.				
3.	Explain final value theorem and its limitation.	2	2	1	1,2
4.	Explain any two advantages of Laplace Transforms over Classical methods.	2	2	2	1,2
5.	When the input to a system is unit step function, the response is 10 sin 2t u(t). Obtain the transfer function of the system.	2	1	4	1,2
6.	Define Time constant of series R-L circuit.	2	1	2	1,2
7.	If a waveform contains rotational odd symmetry, Write the type of terms does the Fourier Series contain.	2	1	4	1,2
8.	Draw the dual of the given network shown in Fig.2	2	4	4	1,2
	3Ω R R				
	20 V (2) 5 Ω § (6 A				
	Fig.2				
9.	Explain the condition for reciprocity in terms of ABCD parameters.	2	2	5	1,2,5
10.	Mention which parameters do you prefer when two 2-port networks are connected in series-parallel to find the overall parameters of the combined network? Explain the procedure to obtain them.	2	2	5	1,2

 $2 k\Omega$ MM

11. a) Find $v_0(t)$ in the circuit shown in Fig. 3 when the switch opens at t=0.

-==0

4 4 1 1,.

Code No. :14313

Code No. :14313

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage	
1	Fundamental knowledge (Level-1 & 2)	55	
2	Knowledge on application and analysis (Level-3 & 4)	35	
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	10	
	(a)a)a		

- 1.80
- minarial of her your y use when dimension and avonged for
- a) Expitate mittal and final monthions of inductor and capan
 - Find the inverse lupicos transforms of F(s)
 - Answer any two of the following:
- Determine i(t) (n the esternit therea in Fig.8 terms Londors Transform).

::4::